
It’s a situation every avid cyclist knows only too 
well. If you cycle up a hill and then back down 
with no net change in elevation, it seems as if 

your slower uphill speed and faster downhill speed 
should offset each other. But they don’t. Your average 
speed is less than it would have been had you cycled 
the same distance on a level road. Similarly, cycling 
into a headwind for half your trip and returning 
home with a tailwind yields an average speed less 
than you would have achieved on a windless day. 
The faster part of the ride doesn’t compensate for the 
slower part. It seems unjust. Most cyclists expect the 
uphill and downhill, or the headwind and tailwind, 
to more or less cancel and are surprised (and frus-
trated!) when they don’t. The purpose of this paper is 
to resolve this paradox. Doing so involves some nice 
real-world applications of Newton’s laws, numeri-
cal problem solving, and exercise physiology. There’s 
a lot to learn from analyzing this problem, and it’s 
readily accessible to introductory physics students. 

Consider first a bicycle traveling on level ground. 
Three forces act parallel to the direction of motion: A 
propulsion force Fprop in the forward direction, a re-
tarding friction force Ffric, and a wind-resistance force  
Fwind. The propulsion force Fprop is really Froad on tire, 
the third-law reaction to the force Ftire on road that the 
cyclist exerts on the road via a gear-and-chain system 
when he presses down on one pedal. You push against 
the road, and it pushes against you, driving you for-
ward. Propulsion forces are difficult for beginning 
students to understand, and they require the system to 
have an internal source of energy—gasoline for your 

car, granola bars for the cyclist. We’ll return to the en-
ergy aspects later.

There are other friction forces—in the chain and 
the wheel bearings—but these are internal forces. 
They affect how much of the cyclist’s expenditure of 
energy is ultimately used to propel the bike, but only 
these three external forces appear in Newton’s second 
law for the bicycle. 

According to Newton’s laws, there is no net force 
on a bicycle moving in a straight line at constant 
speed. Thus the propulsion force must exactly balance 
the friction and wind-resistance forces:

Fprop = Fwind + Ffric .				    (1)

The power required to propel the bike forward at 
speed v is P = Fpropv , and thus

P = (Fwind + Ffric)v .				    (2)

This is the power the cyclist must generate to ride at 
a steady speed v. 

The friction force in Eq. (2) is rolling friction. It 
can be modeled analogously to sliding or kinetic fric-
tion:  Ffric  = mrn, where mr is the coefficient of roll-
ing friction and n is the normal force due to the road 
surface. The normal force is simply mg for an object 
on a horizontal surface, so a reasonable model of the 
friction force is Ffric = mrmg.

Wind resistance is trickier. Many textbooks give 
the drag force as 1

2
2C AvDr , where r is the density of 

air and A is the object’s cross section perpendicular to 
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the direction of motion. CD is the “drag coefficient,” 
a number that depends sensitively on the shape 
and smoothness of the object. Although the drag 
coefficient depends weakly on v, we’ll consider CD 
to be a constant that, like mr , must be determined 
empirically.

The remaining complication is that a bicycle is 
usually not moving through still air. The v is actually 
the relative speed between the bicycle and the air. If 
we define a tailwind (wind blowing in the direction of 
the bicycle’s motion) as a positive wind velocity, and 
thus a headwind as negative, then the cyclist’s velocity 
(not speed, because it could be negative) relative to the 
wind is vrel = v – vwind . 

Now we have to be careful. If we simply square vrel, 
then Fwind will always be a positive number and—as 
we’ve defined it—always represent a retarding force. 
But the wind pushes the bicycle if vwind > v, for which   
Fwind needs to be a negative number. Although it 
looks rather complex, we can deal with an object mov-
ing through wind and get the signs right by writing

F C A v v v vwind D wind wind( )= − −1
2 r . 	 (3)

Returning to Eq. (2), we can now write the power 
required to propel the bicycle at speed v as

						      (4) 
P C A v v v v v mgv

a v v v v v bv

= − − +

= − − +

1
2 D wind wind r

wind wind

r m( )

( ) , 	  	

where a C A= 1
2 Dr  

and b = mrmg are constants for a 
particular bicyclist and bicycle.

Let’s assume that the cyclist rides with a steady 
power output. This is a reasonable assumption for a 
racing cyclist and for a “serious rider” who rides for 
exercise. He or she shifts gears as needed to maintain 
a fairly steady heart rate and breathing rate—that is, a 
fairly steady power output. A cyclist can calculate his 
steady power output, once a and b have been deter-
mined, by measuring his cruising speed, which we’ll 
call v0, on a windless day: P = av0

3 + bv0 . Cycling with 
this same power output, his speed (on level ground) 
on a day when the wind velocity is vwind is the solu-
tion to the equation

						      (5)a v v v v v bv P( ) .− − + − =wind wind 0

Similar models of cycling, but without the effect of 

wind, have been considered by others.1,2

A Concrete Example
I’ll use my own riding experience to make these 

ideas concrete, but an excellent lesson is to let stu-
dents do the calculations with numbers appropriate to 
them. I ride a lightweight road bike (dropped handle-
bars) primarily for aerobic exercise, so I push myself 
reasonably hard and, as judged by heart and breath 
rate, I do ride at a fairly steady power output. I live in 
the coastal mountains of California, about a mile from 
the ocean, so neither windless days nor long, level 
stretches of road are common occurrences. Nonethe-
less, riding along short, level stretches on near-wind-
less days suggests that I could maintain a 20 mph pace 
for one hour (a typical ride duration) should I ever 
find that long, level, windless highway. This is my 
value of v0. 

To determine my personal values of a and b, we 
turn to the “bible” of factual information about cy-
cling, Bicycling Science by David Wilson.3 (Earlier edi-
tions were by Frank Whitt and David Wilson). It is a 
book both fascinating and frustrating. The data tables 
and graphs are taken from a wide variety of sources, 
and in many cases the reader doesn’t know the condi-
tions under which measurements were made. Thus 
reported results on, say, the coefficient of rolling fric-
tion for bike tires span a rather wide range, and trying 
to decide what value is most appropriate to you has to 
be somewhat of an educated guess. 

Coefficients of rolling friction are reported from as 
low as 0.002 for racing tires to 0.015 for “wide tires on 
rough surfaces,” with “wide tires” undefined. The low-
est value appears to be measured on a machine where 
the tire turns against hard, smooth rollers. That might 
be relevant to indoor racing on a wooden track, but 
rolling friction is certainly larger on asphalt pavement. 
After scrutinizing various graphs and tables, I settled 
on mr = 0.006 as a plausible value. The bike and I have 
a combined mass of 85 kg, leading to b = mrmg =  
5.0 N.

The one well-known value for determining a is the 
density of air at 20°C, r = 1.2 kg/m3. My cross-section 
area is not easily calculated, but let’s say my average 
width is 15 in = 0.38 m and that my “height” from 
knees to head while in a biking position is 42 in = 
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1.07 m. My calves and feet present much less area and 
are often bent out of the wind while pedaling, so I’ll 
ignore those. Thus my estimated area is A =  
0.38 m 3 1.07 m = 0.41 m2. As for the drag coef-
ficient CD, I’ll adopt the value 1.0 Wilson gives for a 
road bike with the cyclist in a “touring position” with 
hands on top the brakes. (Sitting upright increases  
CD about 10% whereas a full racer’s crouch lowers it 
about 10%.) I ride in somewhat of a crouch but prob-
ably not enough to change CD. With these choices, I 
find  

a C A= =1
2 0 25D  kg/m.r .  

I can now calculate that my personal power level is

						      (6)
P av bv= + = +0

3
0 0 25 5 0( . ( . kg/m)(8.9 m/s)  N)(8.9 m/s)

= 176 W +

3

  44 W = 220 W,

where I converted v0 = 20 mph to 8.9 m/s. Note 
that this is the power used to propel the bike; my 
actual power output must be slightly higher because 
of friction in the drive train. Wind resistance is far 
more important than rolling friction at this speed.

The assumption is that I’ll continue to provide  
220 W even when the wind blows, adjusting my speed 
to maintain the same level of effort. According to Eq. 
(5), my speed when the wind velocity is vwind is the 
solution to

0 25 5 0 220 0. ( ) . .v v v v v v− − + − =wind wind   (7)

I’ve suppressed units to keep the equation straight-
forward, but it is very important when doing calcula-
tions to remember that v and vwind must be in m/s.

Students—and most instructors!—do not know 
how to solve cubic equations in closed form. Fortu-
nately, there’s no need to. It is easy to solve equations 
such as this in Excel by using the procedure called 
Solver, and doing so is an excellent opportunity for 
students to gain early experience with numerical prob-
lem solving. Type an “initial guess” for v into a cell in 
column A; your personal value for v0 is a very reason-
able initial guess. Then enter the left-hand side of Eq. 
(7) into the adjacent cell in column B, starting with = 
to make it an Excel equation. Refer to the column A 
cell for the value of v and to some nearby cell where 
you’ll enter a value of vwind. The value calculated for 
the column B cell will not be 0 unless the value of v in 
column A is the solution to Eq. (7). You could imag-

ine—and it’s worth having students try this once—
manually adjusting the value of v in column A, using 
trial and error, until you find a value that makes the 
column B cell zero. You’ve then “solved” the equation. 

That’s what Solver does automatically. Select Solver 
from the Tools menu, give it the column B cell address 
as the Target Cell, and tell it you want the Target Cell 
to have the value of 0. Give it the column A cell ad-
dress as the cell whose value you want to vary to solve 
the equation, then click Solve. For the graphs shown, I 
varied the wind speed or slope angle through a prede-
termined range of values, used Solver to find the bike 
speed at each value, and saved each result into another 
column of the spreadsheet from which I could convert 
them to mph and make a chart.

The top and bottom curves in Fig. 1 are my speed 
riding with the wind and heading into the wind, all 
at my personal power level of 220 W. The middle 
curve—the basis for the bicycler’s paradox—is my 
average speed over an out-and-back route, assuming 
the wind parallels my course rather than being a cross 
wind. The values in this graph are in good agreement 
with my personal experience.

With an out-and-back route, I have a headwind 
and a tailwind for equal distances d. Average speed is 
total distance 2d divided by total time. If my speeds 
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Fig. 1. The effect of riding with the wind or against 
the wind at a steady power output. The average speed 
over an out-and-back route decreases as the wind speed 
increases. These graphs are based on my riding charac-
teristics; graphs for other riders will have similar shapes 
but different numerical values.
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out and back are vout and vback, my times out and back 
are, respectively, d/vout and d/vback. Thus my average 
speed is 

	  					     (8)v
v vavg

out back
=

+
2

1 1/ /
.
	

As the middle curve shows, my average speed drops 
steadily as the wind speed increases; the faster down-
wind speed does not compensate for the slower 
upwind speed.

If you drive 10 mph and 30 mph for equal times, 
your average speed is the average of the two speeds, 
namely 20 mph. A faster speed really can compensate 
for a slower speed over equal time intervals. But over 
equal distances, the reciprocal of vavg is the average of 
the reciprocals of the two speeds. When taking recip-
rocals, a smaller speed has disproportionate influence. 
If the slower speed drops below 1

2 0v —which for me 
happens at a headwind speed of ≈20 mph—then  
vavg < v0 regardless of how large the faster speed is. 

What else can we learn from Eq. (7)? For example, 
at what tailwind speed would I “ride with the wind,” 
having a relative wind speed of zero and thus expe-
riencing no wind resistance? Setting the first term in 
Eq. (7) equal to zero, it’s easy to find v = 44 m/s =  
99 mph. I look forward to this day! Until then, as long 
as I pedal to maintain my steady 220 W, my speed 
over the ground is always larger than the tailwind 
speed and thus the relative wind is always in my face.  

But suppose I stopped pedaling and let a tailwind 
push me? If the 220 W in Eq. (7) is replaced with 0, 
it’s easy to find, after converting m/s to mph, that v = 
vwind – 10 mph with my values of a and b. With a  
15 mph tailwind I could cruise at 30 mph by continu-
ing to pedal at full power, or I could be pushed along 
at a gentle 5 mph with no effort at all.

Ups and Downs
Now consider going up and down a hill of angle q  

on a day with no wind. A new force enters Newton’s 
second law, namely the component of the gravita-
tional force parallel to the ground: Fgrav =  mg sin q. 
We should also use n = mg cos q for the normal force; 
however, the cos q term makes no noticeable contri-
bution until q exceeds 10°, hills only professionals 
ride, so in the interest of simplicity I’ll leave the roll-
ing resistance as simply Ffric = mrmg = b. 

With a slope added, no wind, and mg = 833 N, Eq. 
(7) becomes

0.25v3 + (5.0  833 sin q) v – 200 = 0.	 	 (9)

This is solved in Excel just as easily as was Eq. (7). 
Figure 2 shows the results for slopes up to 5°. A 5° 
slope may not sound like much, but it’s an ascent of 
460 ft/mile or, equivalently, an 8.7% grade. Highway 
slopes rarely exceed 3°. The uphill and downhill 
speeds shown in Fig. 2 agree reasonably well with my 
personal experience.

Just as with wind, the faster speed on a downhill 
does not compensate for the slower uphill speed. 
Consequently, the average speed of going up and 
down hills, with no net change in elevation, is less 
than could be achieved over level ground. In fact, the 
situation going up and down steeper hills (more than 
about 2.5°) is even worse than shown because few cy-
clists have the gearing or pedaling speed to maintain 
full power output at speeds in excess of 30 mph. The 
downhill ride may be exhilarating, but it’s likely at a 
speed less than shown in Fig. 2, and thus the rider’s 
average speed suffers even more.

Not surprisingly, adding wind to a hilly out-and-
back ride is a double whammy, but this analysis will 
be left to the reader. My typical route ranges from 
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Fig. 2. The effect of riding up or down a hill at a steady 
power output, assuming no wind. The average speed 
over an up-and-down route decreases as the slope 
increases. These graphs are based on my riding charac-
teristics; graphs for other riders will have similar shapes 
but different numerical values.
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level to slopes of about 3°, so I’ll guess that an average 
slope for the entire ride is ≈1°. If I calculate an average 
speed for going up and down a 1° slope with a tail-
wind of 12 mph then returning against the wind, vave  
drops from the 18.2 mph shown in Fig. 1, for no hills, 
to 17.5 mph. And, indeed, that is just about my aver-
age speed for a one-hour ride on a typical day. 

Exercise Physiology
I noted earlier that P is the power to propel the 

bike—220 W in my case. The rider’s power output 
is larger, mostly due to friction in the chain. Various 
studies3 have found that the efficiency of a clean, lu-
bricated bike chain is ≈95%. Assuming that to be the 
case, my actual steady power output is 230 W, or  
0.31 hp. 

Is that plausible? Back in 1964, in the early days 
of the space program, NASA studied human power 
output by measuring the length of time for which 
volunteers could maintain a particular power output. 
“Healthy men” could sustain just over 200 W for one 
hour, while “first-class athletes” could achieve nearly 
400 W for an hour.3 World-class cyclists have been 
measured at 500 W for an hour. I’m no first-class ath-
lete, and I’m probably not as young as the volunteers 
NASA tested, but 230 W for an hour’s ride seems 
plausible for someone who rides enough to stay in 
shape.

A number of particular interest to anyone who ex-
ercises is how many calories he or she “burns” by do-
ing so. The human body is ≈25% efficient at turning 
metabolic energy into mechanical energy, the other 
75% being transferred to the environment as “waste 
heat” via respiration, perspiration, and radiation. 
Thus my metabolic power is

Pmetabolic < 4 3 230 W = 920 W = 920 J/s.       (10)

Converting joules to calories and recalling that a 
food calorie is 1 Cal = 1000 cal, my metabolic power 
is 790 Cal/hour. So that one-hour ride burns approx-
imately 800 Cal—surely enough to justify a piece of 
cheesecake for dessert.
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